МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

Какие позиции кодификатора элементов содержания проверяет

В экзаменационной работе содержательные элементы из раздела «Молекулярная физика и термодинамика» проверяются заданиями 7-10 части 1 и задачами 21, 23 и 24 части 2.

Ниже представлена таблица, составленная на основе Кодификатора проверяемых требований к результатам освоения основной образовательной программы среднего общего образования и элементов содержания для проведения единого государственного экзамена по физике в 2024 году¹. В таблицу включены все элементы содержания по разделу «Молекулярная физика и термодинамика», которые будут проверяться в КИМ текущего года.

	МОЛЕКУЛЯРНАЯ ФИЗИКА. ТЕРМОДИНАМИКА							
	МОЛЕКУЛЯРНАЯ ФИЗИКА							
1	Модели строения газов, жидкостей и твёрдых тел. Пусть термодинамическая систем							
	(тело) состоит из N одинаковых молекул. Тогда количество вещества $v = \frac{N}{N_{\rm A}} = \frac{m}{\mu}$,							
	где $N_{\rm A}$ – число Авогадро, m – масса системы (тела), μ – молярная масса вещества							
2	Тепловое движение атомов и молекул вещества							
3	Взаимодействие частиц вещества							
4	Диффузия. Броуновское движение							
5	Модель идеального газа в МКТ							
6	Связь между давлением и средней кинетической энергией поступательного теплового движения молекул идеального газа (основное уравнение МКТ):							
	$p = \frac{1}{3}m_0n\overline{v^2} = \frac{2}{3}n\cdot\overline{\left(\frac{m_0v^2}{2}\right)} = \frac{2}{3}n\cdot\overline{\varepsilon_{ ext{nocr}}}$, где m_0 – масса одной молекулы,							
	$n = \frac{N}{V}$ — концентрация молекул							
7	Абсолютная температура: $T = t^{\circ} + 273 \text{ K}$							
8	Связь температуры газа со средней кинетической энергией поступательного теплового							
	движения его частиц:							
	$\overline{\varepsilon_{\text{noct}}} = \overline{\left(\frac{m_0 v^2}{2}\right)} = \frac{3}{2} kT$							
9	Уравнение $p = nkT$							
10	Модель идеального газа в термодинамике:							
	(Уравнение Менделеева — Клапейрона							
	Выражение для внутренней энергии							
	Уравнение Менделеева – Клапейрона (применимые формы записи):							
	$pV = \frac{m}{\mu}RT = \nu RT = NkT, p = \frac{\rho RT}{\mu}$							
	Выражение для внутренней энергии одноатомного идеального газа (применимые формы записи):							
	$U = \frac{3}{2}\nu RT = \frac{3}{2}NkT = \frac{3}{2}\frac{m}{\mu}RT = \nu c_{\nu}T = \frac{3}{2}pV$							

¹ На сайте ФГБНУ «ФИПИ» https://fipi.ru в соответствующем разделе размещены демоверсии, спецификации и кодификаторы КИМ ЕГЭ 2024 г. В архиве с материалами по физике присутствует Кодификатор проверяемых требований к результатам освоения основной образовательной программы среднего общего образования и элементов содержания для проведения единого государственного экзамена по физике.

11	Закон Дальтона для давления смеси разреженных газов:					
	$p = p_1 + p_2 + \dots$					
12	Изопроцессы в разреженном газе с постоянным числом частиц N (с постоянным					
12	количеством вещества v):					
	изотерма ($T = \text{const}$): $pV = const$,					
	•					
	изохора ($V = \text{const}$): $\frac{p}{T} = \text{const}$,					
	изобара ($p = \text{const}$): $\frac{V}{T} = const$					
	I					
	Графическое представление изопроцессов на pV -, pT - и VT - диаграммах					
13	Насыщенные и ненасыщенные пары. Качественная зависимость плотности и давления					
	насыщенного пара от температуры, их независимость от объёма насыщенного пара					
14	Влажность воздуха.					
	Относительная влажность: $\varphi = \frac{p_{\text{пара}}(T)}{p_{\text{насыщ пара}}(T)} = \frac{\rho_{\text{пара}}(T)}{\rho_{\text{насыщ пара}}(T)}$					
	$p_{ ext{ насыш, пара}}(T)$ $ ho_{ ext{ насыш, пара}}(T)$					
15	Изменение агрегатных состояний вещества: испарение и конденсация, кипение жидкости					
16	Изменение агрегатных состояний вещества: плавление и кристаллизация					
17	Преобразование энергии в фазовых переходах					
<i>TEPM</i>	ОДИНАМИКА					
1	Тепловое равновесие и температура					
2	Внутренняя энергия					
3	Теплопередача как способ изменения внутренней энергии без совершения работы.					
	Конвекция, теплопроводность, излучение					
4	Количество теплоты.					
	Удельная теплоёмкость вещества c : $Q = cm\Delta T$					
5	Удельная теплота парообразования r : $Q = rm$					
	Удельная теплота плавления λ : $Q = \lambda m$					
	Удельная теплота сгорания топлива q : $Q = qm$					
6	Элементарная работа в термодинамике: $A = p\Delta V$ Вычисление работы по графику					
	процесса на pV -диаграмме					
7	Первый закон термодинамики:					
	$Q_{12} = \Delta U_{12} + A_{12} = (U_2 - U_1) + A_{12}$					
	$Q_{12} - M_{12} + M_{12} = (C_2 - C_1) + M_{12}$ Адиабата: $Q_{12} = 0 \implies A_{12} = U_1 - U_2$					
8	Второй закон термодинамики, необратимость					
9	Принципы действия тепловых машин. КПД:					
	$\left egin{array}{cccc} A_{ m 3a\; IJMKN} & Q_{ m Harp} - Q_{ m XON} & Q_{ m XON} \end{array} ight $					
	$\eta = rac{A_{ m 3a\; IJHK\Pi}}{Q_{ m Harp}} = rac{Q_{ m Harp} - \left Q_{ m xo\pi} ight }{Q_{ m Harp}} = 1 - rac{\left Q_{ m xo\pi} ight }{Q_{ m Harp}}$					
10	Максимальное значение КПД. Цикл Карно					
	$T_{\text{Harp}} - T_{\text{хол}} = T_{\text{хол}}$					
	$max\eta = \eta_{\mathrm{Kapho}} = rac{T_{\mathrm{Harp}} - T_{\mathrm{xon}}}{T_{\mathrm{Harp}}} = 1 - rac{T_{\mathrm{xon}}}{T_{\mathrm{Harp}}}$					
11	Уравнение теплового баланса: $Q_1 + Q_2 + Q_3 + = 0$					
	$\mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3 + \dots = 0$					

Что нужно знать/уметь по теме

Задания 7 и 8 в соответствии со Спецификацией КИМ ЕГЭ 2024 г. проверяет ограниченный перечень элементов содержания по молекулярной физике и термодинамике соответственно. Эти задания являются заданиями с кратким ответом, в которых необходимо самостоятельно записать ответ в виде числа. Ниже приведены описания проверяемых элементов содержания и умений, которые необходимо проявить при выполнении каждого из заданий 7 и 8, а также примеры заданий этих линий из открытого банка заданий ЕГЭ, раздел «Молекулярная физика и термодинамика».

Задание 7

$\mathcal{N}\!$	Что нужно знать	Что нужно уметь			
1	Связь температуры газа со	Использовать формулу			
	средней кинетической энергией поступательного теплового движения его частиц.	$\overline{\varepsilon_{\text{noct}}} = \overline{\left(\frac{m_0 v^2}{2}\right)} = \frac{3}{2} kT$			
		для расчета физических величин			
2	Уравнение $p = nkT$	Использовать уравнение $p = nkT$ для расчёта			
		физических величин			
3	Уравнение Менделеева-	Использовать уравнение Менделеева-Клапейрона для			
	Клапейрона	расчета параметров газа в изопроцессах.			
4	Изопроцессы (изотерма, изохора, изобара)	изотерма ($T = \text{const}$): $pV = \text{const}$,			
	изолора, изооара)	изохора ($V = \text{const}$): $\frac{p}{T} = \text{const}$,			
		изобара ($p = \text{const}$): $\frac{V}{T} = \text{const}$			
		Анализировать pV -, VT -, pT -диаграммы			

Задание 8

<i>№</i>	Что нужно знать	Что нужно уметь				
1	Элементарная работа в	Определять работу газа в изобарном процессе по				
	термодинамике	формуле $A=p\Delta V$ и с использованием pV -диаграммы				
2	Первый закон термодинамики:	Применять первый закон термодинамики к различным				
	$Q_{12} = \Delta U_{12} + A_{12} = (U_2 - U_1) + A_{12}$	процессам				
3	КПД тепловых машин	Применять формулы для расчёта КПД теплового				
		двигателя:				
		$\eta = rac{A_{ m 3a\ IUИКЛ}}{Q_{ m HAГP}} = rac{Q_{ m HAГP} - \left Q_{ m XOЛ} ight }{Q_{ m HAГP}} = 1 - rac{\left Q_{ m XOЛ} ight }{Q_{ m HAГP}};$				
		и КПД идеальной тепловой машины:				
		$max\eta = \eta_{ m Kapho} = rac{T_{ m Harp} - T_{ m xon}}{T_{ m Harp}} = 1 - rac{T_{ m xon}}{T_{ m Harp}}$				

Задания 10 и 11

Задания 10 и 11 в соответствии со Спецификацией КИМ ЕГЭ 2024 г. могут проверять элементы содержания по любой из тем раздела «Молекулярная физика и термодинамика». Как правило, в экзаменационном варианте эти задания базируются на материале разных тем.

В задании 10 необходимо из пяти предложенных утверждений выбрать все верные утверждения, характеризующие процесс, описанный в тексте задания. Для этого необходимо уметь проводить интегрированный анализ указанного процесса. В задании 11 необходимо либо проанализировать описанный процесс и определить характер изменения двух физических величин, характеризующих этот процесс, либо установить соответствие между графиками и физическими величинами, описывающими какой-либо процесс.

Задания 10 и 11 являются заданиями с кратким ответом, которые оцениваются максимально 2 баллами. Ниже приведены описания проверяемых элементов содержания и умений, которые необходимо проявить при выполнении заданий 10 и 11.

Задание 10

Что нужно знать	чно знать Что нужно уметь				
Молекулярная физика. Термодинамика	Анализировать тепловые процессы, представленные в виде таблиц, графиков или словесного описания: выделять их основные свойства, уметь определять физические величины, характеризующие процесс.				

Задание 11

Что нужно знать	Что нужно уметь	
Молекулярная	Анализировать изменение физических величин в тепловых процессах.	
физика.	Устанавливать соответствие между графиками, описывающими тепловые	
Термодинамика процессы и зависимостями, которые они отражают		

Во второй части работы могут предлагаться следующие задачи по данному разделу:

- качественная задача с развернутым ответом повышенного уровня сложности, максимальный балл – 3 (позиция 21);
- расчетная задача по молекулярной физике повышенного уровня сложности, максимальный балл – 2 (позиция 22);
- расчетная задача с развернутым ответом высокого уровня сложности максимальный балл 3 (позиция 24).

Задачи могут базироваться на любых содержательных элементах раздела. Как правило, в одном экзаменационном варианте эти задачи предлагаются на материале разных тем.

Задание 21

Что нужно знать	Что нужно уметь			
Молекулярная физика. Термодинамика	Решать качественные задачи по физике: работать с условием задачи, проводить рассуждения, объясняющие описанные в условии процессы и явления, подтверждая рассуждения ссылками на изученные свойства явлений, законы и закономерности			

Задание 23

Что нужно знать	Что нужно уметь				
Молекулярная физика. Термодинамика	Решать расчетные задачи: работать с условием задачи, искать необходимые справочные данные, выбирать законы и формулы, необходимые для решения задачи, проводить математические преобразования и расчеты, анализировать полученный результат				

Задание 24

Что нужно знать	Что нужно уметь					
Молекулярная физика. Термодинамика	Решать расчетные задачи по физике: работать с условием задачи, записывать краткое условие задачи, искать необходимые справочные данные, делать рисунок (например, с указанием сил, действующих на тело), если это необходимо для понимания физической ситуации; описывать физическую модель, выбирать законы и формулы, необходимые для решения задачи, проводить математические преобразования и расчеты, анализировать полученный результат.					

Где взять информацию по теме

Учебники

- 1. Мякишев Г.Я., Синяков А.З. Физика. Молекулярная физика. Термодинамика. 10 класс. Углубленное изучение / ООО «Дрофа».
- 2. Мякишев Г.Я., Петрова М.А. и др. Физика. 10 класс. / OOO «Дрофа».
- 3. Касьянов В.А. Физика. 10 класс. Углубленное обучение. / ООО «Дрофа».
- 4. Кабардин О.Ф., Орлов В.А. и др. Физика. 10 класс. Углубленное обучение. / Под редакцией Пинского А.А., Кабардина О.Ф. / АО «Издательство «Просвещение».
- 5. Пурышева Н.С., Важеевская Н.Е., Исаев Д.А. Физика. 10 класс. Углубленное обучение. / Под редакцией Пурышевой Н.С. / ООО «Дрофа».
- 6. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика. 10 класс. Углубленное обучение. /Под редакцией Парфентьевой Н.А. / АО «Издательство «Просвещение».
- 7. Грачев А.В., Погожев В.А., Салецкий А.М., Боков П.Ю. Физика. 10 класс. Углубленное обучение. / ООО «Издательский центр «ВЕНТАНА-ГРАФ».
- 8. Генденштейн Л.Э., Булатова А.А., Корнильев А.Н., Кошкина А.В. Физика. 10 класс. /OOO «БИНОМ. Лаборатория знаний».
- 9. Генденштейн Л.Э., Булатова А.А., Корнильев А.Н., Кошкина А.В. Физика. 10 класс. Углубленное обучение. /Под редакцией Орлова В.А. /ООО «БИНОМ. Лаборатория знаний».
- 10. Белага А.В., Ломанченков И.А., Панебратцев Ю.А.. Физика. 10 класс. / АО «Издательство «Просвещение».
- 11. Генденштейн Л.Э., Дик Ю.И.. Физика. 10 класс. Углубленное обучение. /Под редакцией Орлова В.А. /ООО «ИОЦ Мнемозина».

1. Уроки «Российской электронной школы»

Физика. 10 класс. Уроки 16–25 https://resh.edu.ru/subject/28/10/

Какие задания открытого банка выполнить для тренировки

Задание 7	Задание 8	Задание 9	Задание 10
8E16FE	48EC42	49215D	F5A444
AD774B	14FBF5	17D9A6	F0D87A
3845F2	016604	84BDA5	70D177
03BD78	0D600A	87F244	71D77C
625778	7AC008	E9A5F7	B313B2
CA98BA	934673	F72E75	C6FF20
3AB2B2	69C276	C83B1C	8E3266
497121	7D3CB8	E2B7DC	77F13C
6AB76B	A35ABE	0B89AC	0D4FC9
4C6FA1	663E2C	856FEB	B635CA
Задание 21	Задание 23	Задание 24	
43F9B1	438E2E	258D41	
B4511B	5D4F68	B01805	
2C751A	C5D78B	DA1E75	
641415	426924	33447A	
98EA22		BA06BC	
F2CED0		E69926	
61D26E		655A2B	
		C0CDD7	
		5A6DA8	
		0F5292	
		B27AE1	
		A099EB	
		A9E186	

Примеры заданий 23

1. В сосуде объёмом 30 л при температуре 20 °C находится влажный воздух. Определите массу водяных паров в сосуде, если относительная влажность воздуха равна 60%. Фрагмент таблицы зависимости давления насыщенного водяного пара от температуры приведён ниже.

t, °C	0	5	10	15	20	25
$p_{\scriptscriptstyle{\mathrm{Hac}}}$, кПа	0,61	0,88	1,23	1,71	2,33	3,17

Возможное решение

Относительная влажность воздуха определяется формулой $\phi = \frac{p}{p_{\mbox{\tiny Hac}}}$, где p –

парциальное давление водяного пара, находящегося в воздухе, $p_{\text{\tiny Hac}}$ — давление насыщенного водяного пара при той же температуре.

Уравнение Менделеева – Клапейрона позволяет связать основные

термодинамические параметры водяного пара. $pV = \frac{m}{\mu}RT$, где V — объём

водяного пара, m и μ — масса и молярная масса водяного пара соответственно, T — его абсолютная температура.

В итоге получим:
$$m = \frac{\varphi p_{\text{\tiny Hac}} V \mu}{RT} = \frac{0.6 \cdot 2330 \cdot 0.03 \cdot 0.018}{8.31 \cdot 293} \approx 0.31 \cdot 10^{-3} \text{кг} \approx 0.31 \, \text{г.}$$

Ответ: *m*≈ 0,31 г

2. Температура нагревателя идеального теплового двигателя равна $200\,^{\circ}$ С, а температура холодильника равна $50\,^{\circ}$ С. Определите мощность двигателя, если за $1\,$ минуту он получает от нагревателя $1,8\,$ МДж теплоты.

Возможное решение

Коэффициент полезного действия идеального теплового двигателя определяется соотношением $\eta = 1 - \frac{T_2}{T_1}$, где T_1 и T_2 – абсолютные температуры соответственно

нагревателя и холодильника двигателя. Вместе с тем $\eta = \frac{A}{Q_1}$, где A — совершённая

двигателем работа, а $Q_{\rm l}$ — полученное двигателем от нагревателя количество теплоты.

Мощность – это работа, совершённая двигателем в единицу времени: $N = \frac{A}{t}$.

В итоге получим:
$$N = \frac{Q_1}{t} \left(1 - \frac{T_2}{T_1} \right) = \frac{1,8 \cdot 10^6}{60} \cdot \left(1 - \frac{323}{473} \right) \approx 9,5 \cdot 10^3$$
 Вт $\approx 9,5$ кВт.

Ответ: $N \approx 9,5$ кВт

3. В чашку налили 50 г заварки температурой 30 °С и добавили горячей воды температурой 90 °С, при этом получился чай температурой 70 °С. Сколько горячей воды налили в чашку? Теплоёмкостью чашки и потерями тепла пренебречь.

Возможное решение

По условию задачи в теплообмене участвуют горячая вода и заварка. Поскольку теплоёмкостью стакана и потерями тепла можно пренебречь, в соответствии с уравнением теплового баланса количество теплоты Q_1 , полученное заваркой, и количество теплоты Q_2 , отданное горячей водой, равны $Q_1 = Q_2$, $Q_1 = cm_1(t-t_1)$ и $Q_2 = cm_2(t_2-t)$, где c — удельная теплоёмкость воды, m_1 , t_1 и m_2 , t_2 — массы и температуры заварки и горячей воды соответственно, t — конечная температура чая.

В итоге получим:
$$m_2 = \frac{m_1 \left(t - t_1\right)}{t_2 - t} = \frac{0.05 \cdot \left(70 - 30\right)}{90 - 70} = 0.1$$
 кг.

Ответ: $m_2 = 0.1$ кг

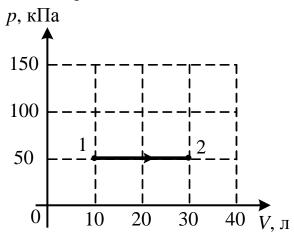
4. В кастрюле находится 2,5 кг льда температурой –20 °C. Сколько потребуется времени, чтобы при помощи электроплитки мощностью 1100 Вт расплавить 30 % льда в кастрюле? Потерями тепла и теплоёмкостью кастрюли пренебречь.

Возможное решение

Поскольку теплоёмкостью кастрюли и потерями тепла можно пренебречь, в соответствии с уравнением теплового баланса количество теплоты $Q = Q_1 + Q_2$, переданное электроплиткой, расходуется на нагревание льда и его частичное плавление.

 $Q_{\rm l} = cm(t_{\it \Pi_{\it l}} - t)$ — количество теплоты, необходимое для нагревания льда до плавления, где c — удельная теплоёмкость льда, m, t и $t_{\it \Pi_{\it l}}$ — его масса, начальная температура и температура плавления соответственно.

 $Q_2 = n \cdot m \cdot \lambda$ — количество теплоты, необходимое для частичного плавления льда, где λ — удельная теплота плавления льда, n — часть расплавившегося льда.


Мощность – это работа, совершённая электрическим током, в единицу времени,

в результате которой выделилось некоторое количество теплоты: $N = \frac{A}{T} = \frac{Q}{T}$. В итоге получим:

$$T = \frac{m(c(t_{\Pi_{1}} - t) + n\lambda)}{N} = \frac{2.5 \cdot (2100 \cdot (0 - (-20)) + 0.3 \cdot 3.3 \cdot 10^{5})}{1100} \approx 320 \text{ c}.$$

Ответ: $T \approx 320 \, \text{c}$

5. Порция одноатомного идеального газа совершает процесс 1—2, график которого показан в координатах p—V, где p — давление газа, V— объём газа. Какое количество теплоты сообщили газу в этом процессе?

Возможное решение

В соответствии с первым законом термодинамики $(Q = A + \Delta U)$ количество теплоты Q, переданное газу, расходуется на совершение газом работы A и увеличение его внутренней энергии ΔU . Поскольку процесс, происходящий с газом, изобарный и давление газа остаётся неизменным, то работа газа в этом процессе определяется по формуле $A = p(V_2 - V_1)$, где p — давление газа, V_1 и V_2 — его начальный и конечный объёмы соответственно.

Изменение внутренней энергии одноатомного идеального газа в изобарном процессе можно определить по формуле $\Delta U = \frac{3}{2} \, p \big(V_2 - V_1 \big).$

В итоге получим:

$$Q = \frac{5}{2} p(V_2 - V_1) = \frac{5}{2} \cdot 50 \cdot 10^3 (30 - 10) \cdot 10^{-3} = 2,5 \cdot 10^3 \text{Дж} = 2,5 \text{ кДж}.$$

Ответ: Q = 2.5 кДж